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Abstract 

A model of the rotary heat exchanger accounting for axial heat dispersion and longitudinal matrix conduction is 
developed. The heat conservation equations are solved using a finite difference approach. The heat exchanger effectiveness 
is then predicted and the effect of axial heat dispersion on the exchanger performance is studied. ;ij 1998 Published by 
Elsevier Science Ltd. All rights reserved. 

Nomenclature 
Ag cross-sectional fluid area for dispersion in a zone 
(with subscript) 
Ag* ratio of Ag, to Ag,, 
A,v cross-sectional matrix area for conduction in a zone 
(with subscript) 
AS* ratio of As, to As, 
C thermal capacity rate (with appropriate subscript) 
D fluid dispersion coefficient 
E, effectiveness without dispersion 
El effectiveness with dispersion 
hA heat transfer coefficient times area for a zone 
hA* ratio of hA, to hA,,, 
k matrix thermal conductivity 
L matrix length 
NTU no. of fluid transfer units (with subscript) 
NTCIo no. of overall transfer units 
Pe-’ overall fluid Peclet number 
Pe, ’ overall matrix Peclet number 
R matrix radius 
r fluid temperature, dimensionless 
T matrix temperature, dimensionless 
z length coordinate 
z* dimensionless length coordinate, z/L. 

Greek symbols 
8” zone n dispersion parameter 

6 ratio of D,, to D,, 
c matrix porosity 
O,- fluid temperature 
u “1, matrix temperature 
0, fluid entry temperature, zone m 
0: fluid entry temperature, zone n 
1, zone n conduction parameter 
4 angle coordinate 
$* dimensionless angle coordinate, $/$ 
$ zone angle. 

Subscripts 
i z-direction 
j &-direction 
m maximum fluid 
M number of z-divisions 
n minimum fluid 
r matrix 
R, S no. of columns in each zone 

1. Introduction 

Rotary heat exchangers presently find applications as 
regenerators for steam boilers, vehicle gas-turbine instal- 
lations, and airconditioning systems. They possess high 
performance and provide large heat transfer area per unit 
volume (upwards of 400 m* per m’). 

__- 
* Corresponding author. 

Earlier models of rotary heat exchangers considered only 
the convection and exchange terms in the energy balances 
[l. 2, 41, neglecting the effects of longitudinal matrix 
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conduction and axial dispersion of the fluids. Later inves- 
tigators included the effects of longitudinal matrix con- 
duction but neglected the effect of axial dispersion on the 
performance of rotary heat exchangers [3, 71. 
The dispersion model is generally used to account for the 
effects of axial heat conduction, turbulent eddies and 
vortices on the transport of energy. It is essentially a plug 
flow model with molecular and macroscopic dispersion 
of energy superimposed on it. Roetzel and Xuan [S] 
employed the dispersion model to account for the effect 
of shell side flow maldistribution on the transient 
behavior of multipass shell and of tube heat exchangers. 
Das and Roetzel[9] presented a dynamic analysis of plate 
heat exchangers based on the dispersion model which 
takes into consideration the deviation from ideal plug 
flow in both fluids to predict the response to temperature 
transients, The purpose of this paper is to develop a 
model for a counterflow rotary heat exchanger that takes 
into account the axial dispersion of heat in both fluids in 
addition to the matrix conduction and exchange terms. 
The simplifying assumptions made are : 

(1) Steady state operation. 
(2) Thermal properties of the two fluids and matrix are 

constant with time and temperature. 
(3) The fluids are in counterflow and the matrix rotates 

on a fixed axis. 
(4) The conductivity of the matrix is negligible along 

the direction of rotation, finite along the fluid flow 
direction and infinite in the radial direction. 

(5) The convective heat transfer coefficients are constant 
along the length. 

(6) Dispersion is finite in the fluid-flow direction, neg- 
ligible along the direction of rotation and infinite in 
the radial direction. 

(7) The fluids enter at uniform and steady temperatures. 
(8) There is no intermixing of the two fluids. 

Estimates of the axial thermal dispersion coefficients (D) 
for packed beds can be obtained from [5] and [6]. 

2. Method 

Figure 1 represents an axial flow rotary heat exchanger 
[3]. Since the matrix conductivity is infinite along the 
radial direction and the fluid perfectly mixed in this direc- 
tion, there are no radial temperature gradients. The 
regenerator may therefore be discretized using the grid 
shown in the figure. If  the elements are considered to be 
fixed in space, each element can be considered as a cross 
flow heat exchanger with a matrix and a fluid stream. 
Although the elements are actually three-dimensional tri- 
angular slices, a two-dimensional grid corresponding to 
the shaded area of the element is used since the fluid and 
matrix temperatures are uniform in the radial direction. 
Each element is, therefore, bounded by four tempera- 

Cn X Cm 

, 
X 

Fig. 1. Representation of the rotary regenerator. 

tures, viz. the inlet and outlet fluid and matrix tempera- 
tures 
For convenience, the grid is cut along the line AA’ to 
assume the form shown in Fig. 2. It may be noted that 
the temperatures on the left and right edges of the grid 
are physically the same, since they correspond to the 
same line AA’. Hence T,,,(i. 1) = T,,(M+ 1 -i, s). Further, 
the temperatures shown on the boundary between the 
two zones are physically the same for each zone. A typical 
element in each zone is shaded. The fluid with the higher 
thermal capacity rate (the ‘maximum’ fluid) enters the 
regenerator at temperature 0, and the ‘minimum fluid’ 
enters at temperature Q1. The temperatures are made 
dimensionless by the following definitions : 

(4 -w Fluid:t = (H, -02) 
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Fig. 2. Coordinate system and schematic representation 

Matrix:T=f$!f$f. 
I 2 

2.1. Overull energy balance fiw a typical element on th(J 
side qf the maximum fluid 

Considering the energy balance for an element. the 
energy transferred to the element by convection, con- 
duction and dispersion equals the energy stored in the 
element. The energy balance for a typical element on the 
maximum fluid side (the side of C,,) may be written as : 

(,~[t”,(i,.i)-t,,,(i+l.j)] 
m 

(1) 

T,(i- l,.j) + T,,,(i- I.,;+ 1) T,,(i.j) + T,,,(i, j+ 1) -____ 
2 2 

(2) 

1 

i 
Tm(Ul+ Tn,(i,j+ 1) _~______ __---___ 

2 
x -_____..___--- 

A; 

+D[c$A4m] ( t,(i-l,j)-2t,(i,j)+t,(i+I,j) 
2Az ) 

(4) 

t,(i,.i)-2r,(i+l,j)+t,(i+2,j) -D [+A,(- 2Az ) 

(5) 

= C,~[T”,(i.j+l)-T,(i,i)l. 

(6) (1) 
The terms in equation (1) are 

(1) Net energy in by convection 
(2) Energy in by matrix conduction. The term in square 

brackets is the area of the element available for con- 
duction 

(3) Energy out by matrix conduction 
(4) Energy in by axial heat dispersion 
(5) Energy out by axial heat dispersion 
(6) Energy stored in the element. 

C,, = mass flow rate of fluid x specific heat of fluid. 
C, = mass flow rate of matrix x specific heat of matrix. 

2.2. Energy balance on thrfluid 

For an element on the side of C,,, the rate of heat 
transfer by convection and dispersion equals the rate of 
change in enthalpy of the fluid across the element. A 
second equation is thus obtained : 
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= cm F [r,(i+ l,.j) - t, GA1 (2) 
m 

where (AT),,, is the mean temperature difference between 
the fluid and the matrix in the element. For small element 
size, this may be taken as the arithmetic mean difference : 

2.3. Boundary conditions 

For the maximum fluid, the Danckwerts boundary 
condition at the entrance of the exchanger is written as 

(3) 

At the exit, there is no dispersive effect. Hence 

dtm 
d.-=O. I (4) 

Also, there is no matrix conduction at the ends. 
Using the above equations one can solve for the matrix 
outlet temperatures T,,(i,j+ 1) and the fluid outlet tem- 
peratures t,(i+ 1, j). The resulting equations can be writ- 
ten with dimensionless coefficients, given in the Appen- 
dix. For the top and bottom row elements in Fig. 2 the 
equations are modified as per the boundary conditions. 
For the zone of C,, the following equations are obtained : 

Top Row : 

T,(l,j+ 1) = CI T,(l,.j)+C,[T,,(2.,i)+ T,(Lj+ 1)l 
+ G[t,W) -t,(lJ)l+ C,[l - t,,W)l (5a) 

t,,CLj) = ~,+(C,+C’,)[1-t,(l,,~)l+C,t,,(3,,j) 
+C~[frn(l~.j)+~m(l..j+ 111. (5b) 

Using the Danckwerts boundary condition (3) at the 
entrance, we also have 

t,(lJ) = [2A,t,(2,j)+A,li(2A,+.4,). (5c) 
Middle Rows : 

T,(iJ+ 1) = C,T,,(l,.i)+C,,,[T,(i- 1,j) 

+T,(i-l.j+l)+T,,,(i+l,.j)+T,(i+I,.j+l)] 

-c,,[t,(~-~I,.~)+~,,,(i+2,,~)1 
+~,2~,(U)-~,3t,(~+ l,i) (64 

t,(i+l.i) = c,,t,,(i,j)+C,,[T,(i,j)+T,(i,j+l)l 
+c,,[r,,,(i-lI,j)+r,(i+2,.j)l. (6b) 

Bottom Row: 

T,(MJ+l) = C,T,(M,.i)+C,(T,(M-l,,i) 

+r,(M-l,j+l)]-C,t,(M-1,j) 

+C41,(Md-C~7tm(M+ l,.i) (74 

t,W+l,j) = C,,r,(M,j)+C,,[T,(M,j) 

+T,,(M,,j+l)l+C,,t,(M-l,j). (7b) 
Similar equations can be derived for the zone of C,. 
Here the z-coordinate has been reversed, following the 
direction of fluid flow as shown in Fig. 2. 

3. Computational procedure 

The finite-difference equations (5)-(7) show that, to 
solve for the matrix outlet temperatures, the temperatures 
of later elements should be known. A three-step com- 
putational procedure is used. 

3.1. step 1 

The solution for the case of no conduction and no 
dispersion is first obtained as follows. The coefficients C,, 
Ci, C,, CIO, C,, and Cl6 are set to zero ; t,(l,j) = 1 and 
t,(l,j) = 1. Considering first the zone of C,, all the 
unknown terms vanish except for t,(i+ 1,j). This is elim- 
inated from equations (5a)-(7a) by using the cor- 
responding equations (5b)-(7b). The modified 
expressions in the maximum fluid zone for the no con- 
duction, no dispersion case are : 
Top Row : 

(c’s -C,G) 
+ ~~c~4n(lj/) @a) 

r,(W = C,t,(l,.i)+C,[T,,(l.,i)+ T,(l,j+ 111. (8b) 
Middle Rows : 

t,(i+l,.i) = ~,,t,(i..i)+(‘,5[T,,(i,i)+T,(i,.j+ 111. 
(9b) 

Bottom Row : 

cc,--C’,;c’,,) 
+ (,i,,~~L(M,.i) (IOa) 
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t,,W+l,j) = C,,t,,(~,,i)+C,,[T,(~,.i) 
+ T,,,(M,i+ 111. (lob) 

Similar modifications are made for the minimum fluid 
zone. A matrix temperature distribution is assumed on 
the left edge (the 1st column of Fig. 2). Equations (8).- 
(10) are used to work down the column and obtain the 
fluid and matrix temperatures for the next column. In this 
way all temperatures in the maximum fluid are calculated. 
The borderline temperatures of the maximum fluid are 
then used as starting values for the minjmum fluid zone 
and the process is repeated, working from the bottom of 
the minimum fluid zone this time, till the right edge is 
reached. If  the temperature distribution assumed on the 
left edge was correct then the right edge will give the same 
values, since they are physically the same. If  the values 
do not agree, the right edge values are assumed as the 
new left edge values and the computation is repeated for 
the entire grid. A solution is accepted when the per- 
centage average error between the right edge and left edge 
temperatures reduces to a specified value (0.00001%). 
Hence the solution for no conduction and no dispersion 
is obtained which provides an initial estimate of the tem- 
perature distributions. 

3.2. Stc~p 2 

With the estimated temperatures from Step 1, equa- 
tions (S)-(7) are used to solve for the no-dispersion case, 
taking matrix conduction into account. This time only 
the coefficients C,, C,> C,, and C,, are set to zero. 
However, no further modifications are necessary because 
estimates of the temperature distribution have already 
been obtained from Step I. By iterating on the grid the 
no-dispersion solution is obtained. At this stage, the no- 
dispersion effectiveness (E,) is computed. By definition : 

temnerature difference of minimum fluid 
t,=-, - -- 

maximum possible difference in the exchanger 

In the dimensionless temperature scales 

3.3. Step 3 

Having determined the no-dispersion performance 
from equation (11) and new temperature estimates, equa- 
tions (S)--(7) are again solved for the dispersion case 
taking all the coefficients and the boundary condition (3) 
into account. The temperature t,(lJ) is first estimated 
from (3). After the temperature distributions are 
obtained by iterating on the grid, the effectiveness with 
dispersion (E,) is calculated as in (I I). 

The effectiveness of the heat exchanger obtained from 
the model is plotted as a function of NT(I, with Pe; ’ as 
a parameter, for two values of PC-.’ (Figs. 34). A sample 
of the results is presented in Table 1 which corresponds 
to Fig. 4. The effect of dispersion is also presented by 
plotting the percentage change in effectiveness versus 
NT/I, with Pe-’ as a parameter. for two values of Pu,, ’ 
(Figs. 5-6). Other parameters are kept at the values indi- 
cated in the legend. The results of the model for the 
no-dispersion case (computed using PC ’ = 0.001 which 
causes a negligible dispersion effect) are found to agree 
(Fig. 4) with the no-dispersion results of Bahnke and 
Howard [3]. 

This being a finite-difference method, the results will A number of effects are observed from the simulation 
vary with the number of subdivisions. Hence the number results : 

of 4 and z subdivisions are increased from I2 to 15 and 
then to 20 at which the variation in the results becomes 
negligible. The results for the no-dispersion case are 
essentially in agreement with those obtained by Bahnke 
and Howard [3]. In Steps 2 and 3, convergence is con- 
siderably improved if two passes per column are made 
before proceeding to the next. This is due to the inter- 
dependence of the fluid and matrix temperatures as seen 
in the equations. Convergence is faster if better estimates 
for each column are obtained by making two passes per 
column, since these are used for further calculations. 

4. Results and discussion 

The dispersive ellect is characterized by the percentage 
change in effectiveness from the no-dispersion case. 

Percentage change = ---F 
(E, -&) x ,oo = AE,z 

__ x 100. 
II E, 

To present the results and to study the effects of dis- 
persion the following parameters are defined : 

I 
NTC’~, = overall transfer units = NTU, ______ 

i I I + @+A)* 

Pr; ’ = inverse matrix Peclet number = i, 

where 

. kA+ 
4, = c,,y 

These parameters are also defined in 131. In addition, the 
overall Peclet number for the fluid phase is defined as : 

or 
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Fig. 4. Effect of heat dispersion on effectiveness 

(1) The efl’ectiveness decreases upon Introducing dis- 
persion into the model. This is as expected. due to 
the axial dispersive heat transfer in the fluid. 

(2) Dispersion effects become more significant with ris- 
ing PP ’ and NTU,. 

(3) Percentage change in effectiveness exhibits two kinds 
of behavior depending on the magnitudes of the 
matrix and fluid Peclet numbers. For small values ot 

Table I 

NTI 0.001 0.004 0.010 o.oso 0.100 0.200 

I5 0.741 I 0.7445 0.7367 0.7334 0.7260 0.7163 

20 0.7477 0.7510 0.7409 0.7368 0.7303 0.7210 

25 0.7517 0.7.550 0.7437 0.7392 0.7332 0.7241 

30 0.7544 0.7577 0.7457 0.7410 0.7354 0.7264 

35 0.7563 0.7596 0.7473 0.7424 0.7370 0.7282 

40 0.7578 0.761 1 0.74X5 0.7436 0.7384 0.7296 

45 0.7589 0.7622 0.7496 0.7445 0.7395 0.7307 

50 0.7598 0.763 I 0.7ms 0.7454 0.7404 0.7317 

55 0.7605 0.7639 0.7512 0.7461 0.7412 (1.7325 

60 0.7611 0.764.5 0.7518 0.7467 0.7418 0.7332 

65 0.7617 0.7651 0.7524 0.7473 0.7424 0.7338 

70 0.7621 0.7655 0.7529 0.7478 0.7430 0.7344 

75 0.7625 0.7659 0.7534 0.7482 0.7433 0.7349 

80 0.7628 0.7663 0.7538 0.7486 0.7439 (I.7354 

85 0.7631 0.7666 0.7541 0.7490 0.7442 0.7358 

90 0.7634 11.7669 0.7545 0.7494 0.7446 0.7362 

95 0.7636 0.7672 0.7548 0.7497 0.7449 0.7366 

100 0.7638 0.7674 0.7551 0.7500 0.7452 0.7369 

105 0.7640 0.7676 0.7553 0.7502 0.7455 0.7372 

110 0 7642 0.7678 0.7556 0.7505 0.7457 (3.7375 

II5 0.7643 0.76X0 0.7558 0.7507 0.7459 0.7377 

120 0.7645 0.768 I 0.7560 0.7510 0.7461 0.7379 

125 0.7647 0.7682 0.7562 0.7512 0.7463 0.7381 

130 0.764X 0.7684 0.7564 0.7514 0.7465 0.7382 

135 0.7649 0.7685 0.7565 0.7515 0.7467 0.7383 

140 0.7650 0.7687 0.7567 0.7517 0.7468 0.7384 

145 0.765 I 0.7688 0.7569 0.7519 0.7470 0.7384 

150 0.7652 0.76X9 0.7570 0.7520 0.7471 0.7385 

PG, ' = 0.30 

(/?A)* = 1.00 
(.4.\)* = 1.00 
(A</)* = I .oo 
c:, C’,,, = l.lJO 

Effectiveness (L) 

PC- ’ 

the matrix number inverse (PC,,‘), it may pass 
through a maximum on increasing the overall trans- 
fer units (.VTCi,,), as shown in Fig. 5 where 
Pe; ’ = 0.01. Since in this case the conduction effect 
is less pronounced. the effectiveness would be close 
to unity at high NTU,, even accounting for dispersion. 
Therefore the dispersive effect would cause a lower 
percentage change in the effectiveness. As the con- 
duction effect becomes more pronounced (for exam- 
ple, Fig. 6 where PC,; ’ = 0.15) the percentage change 
in effectiveness increases asymptotically to a value 
depending upon the values of the matrix and Huid 
Peclet numbers. 

(4) From the manner in which the parameters are 
defined, it is expected that the effects of small changes 
in parameters like 6. (As)*. (.4,9)* and (hil)* are 
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FIN. 6. Etrect of Pr ’ on percentage change in effectlvcness. 

negligible. For example, when the simulation is car- 
ried out with PC,,; ’ = 0.30. /In = 0.05 and d = 1, a 

25% change in (Ay)* from I to 0.75 changes the 
value of PC ’ only by 17% (using the definition of 
PC ‘). This in turn is found to cause only a 0.4% 
variation in effectiveness at NT.?,, = 20, and only 
a 0.5% variation at XTt/,, = 75. Similar parameter 
sensitivity results are also reported for the non-dis- 

persive case in [3]. This enables the presentation of 
the results in a compact form, and the numerical data 
have therefore been generated for typical values given 
in the Figure legends. 

5. Conclusions 

A general numerical method for simulating steady- 
state counterflow rotary heat exchangers accounting for 
matrix conduction and fluid dispersion has been 
developed. Results have been generated over the ranges : 

C,,:C,,,= I.0 and 0.Y 

c::c,, = 2.0 

I < NTC’<, < 120 

(/?A)* = 0.75 

(.4.\)* = 1.0 

(A~q)* = 1 .o 

6 = 1.00 

0.01 d PC,,;’ 6 0.30 

0.001 < PC ~’ < 0.2. 

The method. however. is not restricted in range. The 
tnodel shows significant effects of dispersion, especially 
at hrgher NTU,, values. 

Appendix : Dimensionless coefficients 

Define 

Then the coefficients in equations (4)-(6) are : 
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c = (‘-AsIA,) c,, = p_Arp 6 
(1 +A,) (l+Aj+Ae) 

c- =-!!L A - -!‘-- 
(1 +A,) 

c 
” - (I+Ac+A,) 

AS 
” = (1 +A,) 

c = !A, +A,) 

” (Azf.4;) 

= (A? -2.4,) _ J!iAL c ___..- 
9 (A,+ZA,) 

c‘ 
Ix - (l+A,+A,) 

The coefficients for the zone of C’,, are similarly obtained, 

replacing A by B. 
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